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A B S T R A C T   

Open (i.e., non-forest) ecosystems, such as savannas, shrublands, and grasslands, contain over 40 % of the global 
total ecosystem organic carbon and harbor a substantial portion of the world’s biodiversity. Accurately fore-
casting vegetation dynamics is critical for managing biodiversity, fire, water, and carbon in these open ecosys-
tems. Unlike forests or other relatively stable ecosystems, open ecosystems can have dramatically changing 
vegetation states since they are prone to natural disturbances, long-term trends, and short-term events. Conse-
quently, it is challenging to accurately predict vegetation state in this type of ecosystems. This paper investigates 
the use of deep learning based approaches for forecasting vegetation dynamics in an open ecosystem, the fynbos 
shrublands of the Cape Floristic Region of South Africa, a global biodiversity hotspot. We experiment with 
different deep learning models and examine the ability of thirteen environmental variables, such as precipitation, 
fire history, and temperature, to enhance the forecasting. We find that the ConvLSTM model can forecast 
vegetation state more accurately than four other compared baseline approaches. The environmental variable 
mean precipitation in July (winter) provides the most prominent enhancement for forecasting among the tested 
variables. Finally, we discuss the pros and cons of using a deep learning based approach for vegetation fore-
casting in open ecosystems from a conservation management perspective.   

1. Introduction 

Open ecosystems, such as savannas, shrublands, and grasslands, 
cover about 33.9 % of the total vegetated areas on the surface of the 
Earth (Bond, 2019). They make up over 40 % of the global total 
ecosystem organic carbon (Prentice et al., 2001) and harbor a substan-
tial proportion of the world’s biodiversity. Open ecosystems are often 
more sensitive to climate change than forest ecosystems but have 
received relatively less attention so far (McNicol et al., 2018; Sleeter 
et al., 2018; Duncanson et al., 2019). Accurately forecasting vegetation 
states in open ecosystems is critical for effectively managing their 
biodiversity, fire, water, and carbon, which in turn contributes to a 
number of the United Nations Sustainable Development Goals (SDGs), 
including Goal 3: Good Health and Well-being, Goal 6: Clean Water and 
Sanitation, Goal 13: Climate Action, and Goal 15: Life on Land. 

Forecasting vegetation dynamics in open ecosystems, however, is 
challenging. Unlike forests or other ecosystems with relatively stable 
vegetation states, open ecosystems have complex natural dynamics as 
they are prone to various natural disturbances and seasonality (Slingsby 
et al., 2020). In open ecosystems, trees may be present but are not 
dominant, and this type of vegetation composition makes open ecosys-
tems more susceptible to short-term environmental events, such as fire, 
drought, and temperature extremes. Accordingly, the vegetation states 
of open ecosystems can have dramatic changes, making them more 
difficult to forecast. 

Multidecadal and continuous Earth observations from satellites and 
airplanes have provided rich data sets for studying open ecosystems and 
forecasting their vegetation dynamics. Based on the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index 
(EVI) time series data, Watts and Laffan (2014) assessed the ability of the 
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Breaks for Additive Seasonal and Trend (BFAST) algorithm to detect 
abrupt changes in an open ecosystem, a semi-arid region of New South 
Wales, Australia. They found that BFAST was able to detect between 68 
% and 79 % abrupt vegetation changes caused by flooding but missed 
most changes caused by fires (only detected 3 % of the known changes). 
Browning et al. (2017) also examined the ability of the BFAST algorithm 
to detect vegetation changes in a grassland open ecosystem in southern 
New Mexico based on MODIS Normalized Difference Vegetation Index 
(NDVI) time series data from 2000 to 2013, and found that BFAST was 
able to detect about 75 % of the known abrupt changes in vegetation 
states. Leveraging a 10-year archive of biweekly MODIS satellite imag-
ery data, Wilson et al. (2015) developed a Hierarchical Bayesian (HB) 
model to monitor and forecast the vegetation dynamics in an open 
ecosystem, which can explain about half (with an R2 = 0.47) of the 
vegetation dynamics following a fire. Slingsby et al., (2020) further 
designed a workflow based on this HB model to detect the abnormal 
changes in the vegetation states (e.g., due to illegal vegetation removal, 
drought, or invasion by alien trees) by examining the deviation of the 
observed NDVI signals from the model predictions. 

Along with the availability of Earth observation data, the rapid ad-
vancements of artificial intelligence (AI) techniques provide new op-
portunities for enhancing forecasting of vegetation dynamics of open 
ecosystems. Researchers have developed and trained various deep 
learning models to address a wide range of social and environmental 
challenges, such as poverty estimation (Burke et al., 2021), precipitation 
forecasting (Shi et al., 2015), land cover classification (Rußwurm and 
Körner, 2018), population mapping (Huang et al., 2021), urban func-
tional region detection (Yang et al., 2022), and many others. These 
studies have shown that deep learning models have good performance in 
many tasks, especially when the objective of a task can be formalized as 
classification or forecasting. Some studies specifically focused on the use 
of deep learning models for forecasting vegetation states and detecting 
abnormal vegetation changes. (Reddy and Prasad, 2018) used a long 
short-term memory (LSTM) model to predict NDVI in the evergreen 
forest in the interior of the Great Nicobar Islands and mangroves on the 
coastline of the island. Irvin et al. (2020) developed ForestNet, a con-
volutional neural network (CNN) model, for classifying the drivers of 
deforestation based on Landsat 8 images. Ahmad et al. (2020) used a 
convolutional long short-term memory (ConvLSTM) model to forecast 
the NDVI of soybean crop fields with the goal of better predicting crop 
yield and planning agricultural activities. While deep learning based 
approaches have been used for forecasting vegetation dynamics in an 
increasing number of studies (Ferchichi et al., 2022), there is a lack of 
research that investigates their use in open ecosystems where vegetation 
states can change dramatically due to natural disturbances and that 
examines the pros and cons of these approaches from a conservation 
management perspective. 

This paper aims to address such a knowledge gap by investigating the 
use of different deep learning models for forecasting vegetation dy-
namics in an open ecosystem, the fynbos shrublands of the Cape 
Peninsula in the Cape Floristic Region (CFR) of South Africa. The CFR is 
a Global Biodiversity Hotspot (Myers et al., 2000; MacFadyen et al., 
2022) and a UNESCO World Heritage Site. The vegetation variable that 
we aim to predict is NDVI derived from MODIS imagery. Since the NDVI 
data is in the form of a time series of 2D images, we formalize this 
vegetation dynamics forecasting task into a time series prediction 
problem: given a time series of NDVI images for the study region in the past 
time steps, predict NDVI images in future time steps. The main model of 
interest that we investigate is the ConvLSTM model proposed by Shi 
et al. (2015) which has shown outstanding performance in prediction 
tasks based on time series of satellite images (Xiao et al., 2019; Ahmad 
et al., 2020; Boulila et al., 2021). In addition, we also test two other deep 
learning models commonly used for time series forecasting: a vanilla 
RNN model and a fully-connected LSTM (FC-LSTM) model. Both models 
have been used for NDVI time-series predictions previously (Step-
chenko, 2015; Reddy and Prasad, 2018; Rhif et al., 2020), but they did 

not use convolutional operations to analyze the image at each time step. 
We further examine whether and to what extent additional environ-
mental variables, such as precipitation, fire history, and vegetation type, 
can help improve forecasts, and how accurately the best deep learning- 
based approach can forecast vegetation dynamics in longer time periods 
ahead (e.g., 1 year ahead). 

2. Study area and data 

The study area is the Cape Peninsula located at the south-western tip 
of South Africa (Fig. 1). This area is part of the CFR, and most of its 
vegetation is fynbos that is subject to various natural disturbances such 
as fire and seasonality. The indigenous vegetation in this region is 
threatened by climate change, habitat loss, and invasion of alien species 
(Rouget et al., 2003; Ntshanga et al., 2021; Skowno et al., 2021). 
Accurately forecasting the vegetation dynamics in this area can help 
conservation managers quickly identify abnormal changes and inform 
conservation management decisions. 

We downloaded the MODIS NDVI scenes from the MOD13Q1 (Didan, 
2015a) and MYD13Q1 (Didan, 2015b) Version 6 products for the study 
area from Google Earth Engine for the time period of 2000-02-18 to 
2017-07-20. In total, we obtained 748 NDVI images covering the study 
area organized in a time series (i.e., 748 time steps), and the time in-
terval between two consecutive images is 8 days. All the NDVI images 
have the same size of 172 (height) by 63 (width) with a spatial resolu-
tion of 250 m. The original NDVI data contain noise but come with a 
quality assessment (QA) file indicating the quality of each pixel. We used 
the pixels with a QA value of 0 (“Good data; use with confidence”), and 
applied the savgol filter to smooth the noise pixel values based on the 
values in nearby time steps of the same pixels (Jonsson and Eklundh, 
2002). These 748 NDVI images have different numbers of good pixels 
and noise pixels due to different cloud covers and other noise factors at 
each time step. The savgol filter is applied to only the noise pixel values, 
and its window length is set to seven, i.e., a noise value is smoothed 
based on the values in three nearby time steps on its two sides. The 
smoothed results of nine randomly selected pixels are visualized in 
Supplementary Figure S1. To further quantify the effect of the savgol 
filter, we measure the means and standard deviations of the original and 
smoothed NDVI series. The original NDVI has a mean of 0.510 and a 
standard deviation of 0.167, and the smoothed NDVI has a mean of 
0.512 and a standard deviation of 0.142. Thus, the savgol filter largely 
keeps the mean value of the original NDVI data while reducing the 
overall data variance by smoothing out noise values. In addition, pixels 
covered with clouds have a value of 3 (“Cloudy; target not visible, 
covered with cloud”) in the QA file, and their values are also smoothed 
by the savgol filter. With the smoothed NDVI time series images, we then 
used the first 75 % of the images as the training data and the remaining 
25 % images as the test data. 

In addition to NDVI images, we also used environmental data to 
examine whether and to what extent environmental variables can help a 
deep learning model make better predictions. Based on previous studies 
(Wilson et al., 2015; Slingsby et al., 2020), we included 13 environ-
mental variables that are likely to influence vegetation dynamics in the 
studied open ecosystem, which are: (1) elevation, (2) slope, (3) aspect, 
(4) topographic position index (TPI), (5) topographic roughness index 
(TRI), (6) highest temperature in January (summer in South Africa), (7) 
lowest temperature in July (winter), (8) mean precipitation in January, 
(9) mean precipitation in July, (10) mean solar radiation in January, 
(11) mean solar radiation in July, (12) vegetation type, and (13) fire 
history. The environmental variables related to temperature, precipita-
tion, and solar radiation can change dramatically within short time 
periods. We choose to use static rather than dynamic measurements for 
these variables based on a theoretical rationale. The plant species that 
live in our studied open ecosystem vary across space, and that variability 
is driven in large part by the environmental spatial heterogeneity. For 
example, different species live in shaded ravines (low solar radiation) 

Y. Ma et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103060

3

compared with mountain tops (high solar radiation). Using static envi-
ronmental variables allows the model to better focus on spatial hetero-
geneity, and similar static variables have also been used in previous 
ecological studies (Guisan and Zimmermann, 2000; Bucklin et al., 2015; 
Wilson et al., 2015). While adding dynamic solar radiation and other 
dynamic environmental variables may help the model predict some 
short-term variability of vegetation activity captured by NDVI, these 
dynamic variables could also introduce substantial noise due to their 
large value changes in short time intervals, which may not directly 
contribute to the vegetation growth in the studied open ecosystem at 
longer time scales. With these considerations, we choose to focus on 
static environmental variables in this study. 

We obtained data for the 13 environmental variables in the following 
ways. For elevation, we downloaded the 10 m Digital Elevation Model 
(DEM) data from the open data portal of the City of Cape Town. The 
variables of slope, aspect, and topographic indices were then derived 
from this DEM data. The variables related to temperature, precipitation, 
and solar radiation were extracted from the CHELSA climatologies 
(Karger and Zimmermann, 2019). We obtained the vegetation type layer 
from the City of Cape Town’s Environmental Management Department 
through the city’s open data portal. The fire history variable was 

included in the form of vegetation age calculated using the 
Table Mountain National Park (TMNP) fire scar database which has been 
maintained by South African National Parks (Forsyth and Van Wilgen, 
2008). All of the 13 environmental variable data layers were resampled 
to match the resolution of the NDVI pixels using bilinear interpolation. 
Because each environmental data layer has missing values located at 
different pixels, we designed a simple mask to keep only those pixels that 
have valid values in all environmental data layers. Fig. 2 shows 12 of 
these 13 environmental data layers, excluding fire history. Fire history 
data are in the form of a time series of images (the same as the NDVI 
data). 

3. Methods 

3.1. Overview of experimental design 

In this study, we aim to answer three research questions (RQs) 
through three sets of experiments. The three questions are: RQ1: how 
accurately can different deep learning models forecast vegetation dy-
namics in the studied open ecosystem based on NDVI time series data? 
RQ2: whether and to what extent can different environmental variables 

Fig. 1. The study area of the Cape Peninsula located at the south-western tip of South Africa.  
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help enhance vegetation forecasting? RQ3: how accurately can the best 
deep learning based approach forecast vegetation dynamics in longer 
time periods ahead? To answer RQ1, we train and test three deep 
learning models, i.e., RNN, FC-LSTM, and ConvLSTM, using NDVI time 
series data. To answer RQ2, we add the 13 environmental variables to 
the input of the best deep learning model identified in RQ1 and conduct 
an ablation study by removing one environmental variable at a time and 
measuring how the forecasting accuracy changes. To answer RQ3, we 
use the best deep learning model with the best set of environmental 
variables identified in RQ2, and examine its forecasting accuracy at 
different time steps ahead, from 1 step ahead (8 days) to 46 steps ahead 
(about 1 year). An overview of the experimental design is provided in 
Fig. 3. 

3.2. Deep learning models 

Three different RNN models are used in this study. In the following, 
we provide brief descriptions about their core ideas, and more details 
about these models are available in related textbooks and papers 
(Hochreiter and Schmidhuber, 1997; Shi et al., 2015; Bengio et al., 
2017; Géron, 2019).  

• Vanilla recurrent neural network (RNN): The vanilla RNN model, or 
simply RNN model, is a neural network model suitable for handling 
sequential data (Bengio et al., 2017), such as the NDVI time series 
data in this study. The RNN model processes data through a sequence 
of time steps, and at each time step, the neurons of the model take 
into account not only the input data from the current time step but 

Fig. 2. Maps of twelve environmental data layers used in this study (excluding fire history). The meanings of the vegetation type codes (in the lower-right vegetation 
type subfigure) are: 2: Beach; 5: Cape Flats Dune Strandveld - False Bay; 6: Cape Flats Dune Strandveld - West Coast; 7: Cape Flats Sand Fynbos; 8: Cape Lowland 
Freshwater Wetlands; 11: Hangklip Sand Fynbos; 14: Peninsula Granite Fynbos - North; 15: Peninsula Granite Fynbos - South; 16: Peninsula Sandstone Fynbos; 17: 
Peninsula Shale Fynbos; 18: Peninsula Shale Renosterveld; 20: Southern Afrotemperate Forest. See Fig. 1 for region location and scale. 
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also the model output from the previous time step. In this way, the 
RNN model can be considered as having a “memory” of the past, and 
such memory can help the RNN model make effective predictions 
about the future when there exists a temporal autocorrelation among 
the data at different time steps, such as a time series of NDVI values 
from the same pixel. To use RNN in this study, the 2D NDVI image at 
each time step needs to be flattened into a 1D vector before it is fed to 
the model.  

• Fully connected long short-term memory (FC-LSTM): While vanilla RNN 
already considers previous time steps, its ability to handle longer 
time series is rather limited due to gradient vanishing or exploding 
problems (Bengio et al., 1994). To overcome this limitation, a variant 
of RNN, long short-term memory model, was proposed (Hochreiter 
and Schmidhuber, 1997). In this model, neurons and computational 
operations are organized into three gates: input gate, forget gate, and 
output gate. The input gate decides which part of the information 
from the current and previous time steps should be added to the 
memory of the model, the forget gate decides which part of the in-
formation should be forgotten, and the output gate decides the 
output to be passed to the next step. This design allows the LSTM 
model to keep both long-term information from many previous steps 
away and short-term information from more recent time steps. A FC- 
LSTM model has each neuron in one layer fully connected to the 
neurons or input values in the previous layer. To use FC-LSTM in this 
study, the 2D NDVI image at each time step also needs to be flattened 
into a 1D vector.  

• Convolutional long short-term memory (ConvLSTM): While the FC- 
LSTM model can handle longer time series data, it needs to process 
the data at each time step as a 1D vector. Consequently, it loses 
important spatial information among the input values when the data 
at each time step is a 2D image, such as video data or a time series of 
satellite images. In these and other 2D image data, spatial autocor-
relation often exists as pixels nearby tend to have similar values. To 
capture the potential spatial autocorrelation among the input values, 
the ConvLSTM model was proposed (Shi et al., 2015), which uses the 
backbone of a LSTM model but leverages convolutional operations to 
process the 2D image at each time step without first flattening it into 
a 1D vector. In this way, the ConvLSTM model preserves the spatial 
positions of the input pixels, and can learn their potential spatial 

autocorrelation at the model training stage. Meanwhile, the LSTM 
backbone allows ConvLSTM to capture the temporal autocorrelation 
of data in current and previous time steps. To use ConvLSTM in this 
study, the 2D NDVI image at each time step does not need to be 
flattened, and the model directly takes a time series of NDVI images 
as the input and predicts NDVI images in one or multiple future time 
steps. 

For these three models, we conduct hyperparameter tuning to 
identify the best model architectures using the random search function. 
The search spaces set for the hyperparameters are: [1, 10] (with a step of 
1) for the number of hidden layers, [10, 80] (with a step of 10) for the 
number of filters for the ConvLSTM layers, {P/100, P/50, P/20, P/10} 
(where P is the total number of pixels in an NDVI image) for the number 
of neurons for the RNN and FC-LSTM layers, {3, 5, 7} for the kernel size, 
and {‘linear’, ‘sigmoid’} for the activation function. The Python package 
KerasTuner is used to implement this tuning process. The best model 
architectures are then identified based on the hyperparameter tuning 
results. 

3.3. Evaluation metrics 

To evaluate the performance of different approaches, we use two 
metrics: root mean square error (RMSE) and R squared (R2). RMSE 
measures the average deviation of the predicted NDVI values from the 
observed NDVI values (Equation (1)). The lower the RMSE, the better a 
forecasting approach is. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ , (1) 

where N is the total number of test pixels in the test NDVI images, ŷi 
is the predicted NDVI value of the ith pixel, and yi is the observed NDVI 
value. The second metric R2 is calculated using Equation (2): 

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − y)2 , (2) 

It measures the overall consistency between the predicted NDVI 

Fig. 3. An overview of the experimental design of this study.  

Y. Ma et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103060

6

values and the observed NDVI values. The higher the R2 value, the better 
a forecasting approach is. The test pixels are from the NDVI images 
completely held out from training, and we only use those pixel values 
with a QA value of 0 (i.e., “Good data; use with confidence”) for 
calculating RMSE and R2. In addition, since we used the savgol filter to 
smooth noise values, some test pixel values could be “leaked” to the 
input data when noise values exist in the previous three steps of a test 
value (because a window size of seven was used for the savgol filter). We 
excluded these test values from evaluation to enhance the robustness of 
results. 

4. Results 

4.1. Model performance 

We first present results regarding the performance of different 
models in vegetation dynamics forecasting in the studied open 
ecosystem. The model performance is measured based on a 15-to-1 
forecasting task, in which each model is given the NDVI images of the 

study area in the previous 15 time steps (about 120 days), and is asked to 
forecast the NDVI in the next time step (i.e., the 16th time step). We use 
the setting of previous 15 time steps in this forecasting task, because it 
provides a moderate computational efficiency and also a lot of infor-
mation is already provided in a 120-day time period for a model to make 
predictions. All three models were trained using the same NDVI images 
in the first 561 time steps (75 % of the total data) and were tested on the 
same remaining 187 time steps (25 % of the data). In addition to the 
three deep learning models, we also use two naive forecasting baselines, 
which are: Baseline 1: it simply predicts the NDVI at the next step as the 
same as the NDVI at the last step, and Baseline 2: it predicts the NDVI at 
the next step as the average of the previous 15 time steps. While the two 
baselines can be considered as naive forecasting, they are not that naive 
since the NDVI in the next time step in most cases will not be largely 
different from its previous time step or the average of the previous 15 
time steps. Fig. 4 shows the RMSE, R2, training time, and prediction time 
of the five different approaches. All experiments are conducted on the 
Microsoft Azure cloud computing platform with the Standard NC6 vir-
tual machine with Intel Xeon E5-2690 v3 processor (6 cores), 56 GB 

Fig. 4. Performance of the five different approaches for vegetation dynamics forecasting for the study area in a 15-to-1 forecasting task: (a) RMSE; (b) R2; (c) training 
time; and (d) prediction time. 
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RAM, 380 GB disk, and NVIDIA Tesla K80 GPU. 
The two naive baselines had RMSEs between 0.062 and 0.068 and R2 

between 0.68 and 0.73 when forecasting the next-step vegetation state. 
Both baselines performed better than RNN and FC-LSTM which achieved 
an R2 of about 0.61. We believe that these two simple baselines achieved 
better performance than the two more complex models largely because 
these two baselines are particularly fit for the task of next-step predic-
tion. Despite the strong baselines, the ConvLSTM model makes the most 
accurate predictions by achieving the highest R2 of 0.798. In terms of 
training time, the ConvLSTM model requires the longest training time of 
over 8 h, while the RNN and FC-LSTM models can be trained within an 
hour (the two baselines do not need to be trained). In terms of prediction 
time, the ConvLSTM model takes 89 s to predict all the NDVI values in 
the future 187 time steps, while the other approaches can finish their 
predictions within 3 s. 

Given the overall higher forecasting accuracy of ConvLSTM, we ask 
the question: does this higher forecasting accuracy come from one (or a 
few) subregions of the study area, or is this higher forecasting accuracy 
more evenly distributed across the entire study area? To answer this 
question, we compute the spatial RMSE for each of the five approaches, 
in which RMSE is computed for each pixel over all the test time steps. 
The results are shown in Fig. 5, in which lighter gray indicates higher 
RMSE and darker gray indicates lower RMSE. The spatial RMSE figure of 
ConvLSTM is darker than the other four approaches across the entire 
study area, suggesting that the higher forecasting accuracy does not 
come from merely one or a few subregions. 

To intuitively see the predictions of ConvLSTM, we randomly select 
six pixels and visualize their observed and predicted NDVI time series in 
Fig. 6. We also indicate the locations of the pixels on the map of the 
study area at the center of the figure, and indicate the low-quality pixel 
values (based on the QA file) in the time series plots. The upper left and 
the lower right time series plots contain high percentages (over 75 %) of 
low-quality values. Their corresponding pixels are located close to the 
coastline, and these low-quality values are likely due to influences from 
the ocean. The other four time series plots contain small percentages 
(within 25 %) of low-quality values and their corresponding pixels are 
located more toward the inland area. In the middle subfigure on the left 
side of Fig. 6, there is a sudden drop of NDVI followed by a gradual 
vegetation recovery. The fire history data of the corresponding pixel 
show that a fire occurred at that time step, likely causing this sudden 
drop of NDVI. This example shows that the trained ConvLSTM model 
can still provide fairly accurate predictions when there is a major 
disturbance (i.e., fire). Overall, the predicted NDVI time series of 
ConvLSTM are consistent with the observed NDVI time series, when the 
percentages of low-quality pixels are small. Note that low-quality pixel 
values are not used for calculating R2 and RMSE since their true NDVI 

values are unknown. 
It is worth noting that the three deep learning models were trained 

with time series of NDVI images only, and no environmental variables 
were used in this set of experiments. The reason that we did so is that 
other environmental data layers may not always be available. For 
example, most of the environmental data layers used in this study were 
created and maintained by local authorities or organizations in CFR of 
South Africa, such as the City of Cape Town’s Environmental Manage-
ment Department. When there is a lack of relevant local authorities or 
organizations, or when the relevant local authorities or organizations 
lack sufficient resources to create and maintain such data sets, these 
environmental data layers may not be available. By contrast, global- 
scale NDVI data are readily available from public satellite data sour-
ces. Thus, testing the performance of models trained with NDVI data 
only can help us understand how accurately these models can forecast 
vegetation states in more general situations. 

4.2. The ability of environmental variables for enhancing forecasting 

In our study area of the Cape Peninsula, we are fortunate to have a 
number of environmental data layers created and maintained by rele-
vant local authorities and organizations. Here, we present the results of 
including the 13 environmental variables into the forecasting model (in 
addition to NDVI time series) to understand whether and to what extent 
these environmental variables can help further improve the forecasting 
accuracy. We focus on the ConvLSTM model which has shown the best 
performance in our previous set of experiments, and we use the same 15- 
to-1 forecasting task as used previously in order to compare the new 
performance of the model with not using environmental variables. To 
include environmental variables, we add them as additional channels 
into the input of the ConvLSTM model. Thus, the ConvLSTM model is 
aware of both NDVI and environmental conditions at each time step. 

We first present the result of including all 13 environmental variables 
all together into the ConvLSTM model. Surprisingly, the model does not 
show a clear improvement in forecasting accuracy. In fact, the R2 of the 
model slightly decreases (a decrease of 0.003 in R2) after all 13 envi-
ronmental variables are included, compared with using NDVI time series 
only. With curiosity, we further conduct an ablation study by removing 
one environmental variable at a time and measuring the forecasting 
accuracy change after the environmental variable is removed. Fig. 7 
shows the changes of the model performance in RMSE and R2 when each 
of the environmental variables is removed. Note that we control the 
experiments by ensuring that all the other environmental variables are 
kept the same. 

In Fig. 7, a positive RMSE change indicates that the forecasting ac-
curacy of the model decreases when the corresponding environmental 

Fig. 5. Spatial RMSE of the five approaches for vegetation dynamics forecasting.  
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variable is removed, suggesting that this environmental variable is 
important for the model to make correct predictions. By contrast, a 
negative RMSE change indicates that the forecasting accuracy of the 

model, in fact, increases when the corresponding environmental vari-
able is removed, suggesting that the environmental variable is probably 
less useful for the model to predict vegetation state. The R2 changes 
should be interpreted in a reverse manner, i.e., negative changes indi-
cate that the corresponding environmental variables are useful, while 
positive changes indicate that the corresponding environmental vari-
ables are probably less useful. As can be seen, three environmental 
variables, namely topographic roughness index, mean precipitation in 
July (winter), and vegetation type, positively contribute to the fore-
casting of vegetation dynamics of the fynbos open ecosystem. The other 
ten environmental variables have small negative effects on the fore-
casting accuracy. 

Since only three environmental variables have shown the effect of 
improving forecasting accuracy, could we obtain a better model by 
including these three environmental variables only? To answer this 
question, we train another model using only these three environmental 
variables and NDVI images. However, keeping only these three envi-
ronmental variables does not achieve the best performance either, with a 
slight decrease in R2 compared with using all 13 environmental vari-
ables. This result suggests that there may exist certain interactions 
among the environmental variables inside the model, and we cannot 
simply remove all the other nine variables. Realizing this complexity, we 
use a greedy approach to identify a better forecasting setting, in which 
we gradually remove the environmental variables starting from those 
that have shown the largest negative effects on forecasting accuracy. If 
removing one environmental variable leads to improved forecasting 
accuracy, we remove that variable and continue to test the next variable; 
otherwise, we put that variable back and move to testing the next var-
iable. Through this greedy approach, we find that removing the variable 
slope achieves the highest forecasting accuracy, with an RMSE of 0.053 
and an R squared of 0.807. 

4.3. Forecasting over long time periods 

In the previous two sets of experiments, we have focused on under-
standing the forecasting accuracy of different approaches based on a 

Fig. 6. Predicted NDVI of ConvLSTM and observed NDVI in six randomly selected pixels and their locations in the study area.  

Fig. 7. RMSE and R2 changes of the ConvLSTM model when different envi-
ronmental variables are removed, compared with using all environ-
mental variables. 
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next-step prediction task. Here, we present the results of multi-step 
prediction, and we focus on the best approach identified so far, i.e., 
the ConvLSTM model integrated with the environmental variables 
excluding slope. The forecasting steps tested include: 1 step ahead (8 
days), 4 steps ahead (about 1 month), 11 steps ahead (about 3 months), 
15 steps ahead (120 days), 23 steps ahead (about half a year), and 46 
steps ahead (about 1 year). We also compare the ConvLSTM with 
environmental variables with the same four baselines as used in the first 
set of experiments, which are: Baseline 1 (same as the last step), Baseline 
2 (average of the previous 15 steps), RNN, and FC-LSTM. Note that the 
two deep learning models are trained using NDVI images only and serve 
as two additional baselines for the ConvLSTM with environmental var-
iables. The results are shown in Fig. 8. 

As can be seen, all approaches have decreased forecasting accuracies 
when they are asked to predict longer time steps ahead. While Baseline 1 
is a strong baseline for predicting 1 step ahead, its performance de-
creases substantially over longer time steps and becomes the worst 
approach for predicting 46 steps ahead. The performances of RNN and 
LSTM change over different time steps, and are generally worse than the 
two naive forecasting approaches for predicting shorter time steps and 
better for predicting longer times steps than Baseline 1. The ConvLSTM 
model with environmental variables has performed the best among all 
the five approaches in all the tested time steps, although its performance 
is only slightly better than Baseline 2 for predicting 46 steps ahead. 

5. Discussion 

5.1. Forecasting vegetation dynamics in an open ecosystem using different 
approaches 

The results of our experiments suggest that the ConvLSTM model can 
forecast vegetation dynamics in the studied open ecosystem with fairly 
high accuracy. While ConvLSTM has been used previously for NDVI 
forecasting such as in agricultural land (Ahmad et al., 2020), it is un-
known how accurately it can forecast vegetation dynamics in open 
ecosystems where the vegetation states can change dramatically. Our 
study therefore provides one piece of evidence by demonstrating that 
the ConvLSTM model is overall effective in the studied open ecosystem 
in South Africa which is a global biodiversity hotspot. Our study also 
reveals the roles of 13 different environmental variables in enhancing 
vegetation dynamics forecasting, and the performance of different 
models in predicting vegetation states in longer time periods ahead. In 
addition, the ConvLSTM model has shown a higher forecasting accuracy 
than that of the RNN and FC-LSTM models. While the other two models 
take into account the past vegetation states for making predictions, they 
process 2D NDVI images in the form of 1D vectors and do not make use 
of the important spatial information related to pixel locations. By 

contrast, the ConvLSTM model preserves such spatial information by 
directly processing 2D NDVI images and leverages convolutional oper-
ations to capture the likely similarity of vegetation states of nearby 
pixels. Compared with Baseline 2 which has achieved the second best 
performance in most experiments, ConvLSTM shows an improvement of 
about 0.01 in RMSE. While this is only a small improvement in terms of 
its absolute value, NDVI values on land typically range between [0, 1], 
and an RMSE improvement of 0.01 can still be useful. From a percentage 
perspective, it is about 15 % improvement compared with the RMSE of 
Baseline 2. In addition, the 0.01 RMSE improvement is an average value 
for an individual pixel. When applying this improvement to the many 
pixels in the entire study area, we may still gain a large improvement 
collectively in predicting the vegetation states across many different 
locations. 

5.2. Pros and cons of using a deep learning based approach for 
conservation management 

The results of our experiments suggest that the approach of inte-
grating ConvLSTM with environmental variables has potential to be 
used as a forecasting tool to support conservation management. Then, 
what would be some of its pros and cons? We identify three pros for such 
an approach. First, as shown in the experiments, the ConvLSTM model 
integrated with environmental variables can achieve a relatively high 
prediction accuracy, such as an R2 of 0.680 for predicting three months 
ahead. A higher forecasting accuracy can help conservation managers 
better prepare for the future and identify the abnormal changes which 
may otherwise be missed. Second, such a vegetation dynamics fore-
casting model can be run frequently (e.g., once every 8 days) and 
therefore produces predictions with a high temporal resolution which is 
also critical for supporting conservation management decisions (Mac-
Fadyen et al., 2022). Third, the vegetation states forecasted by such an 
approach are spatially explicit, i.e., in the form of 2D images. This 
spatially explicit forecasting can help conservation managers identify 
the locations of potential abnormal vegetation changes, so that field 
trips could be arranged to investigate the underlying issues. 

We expect two likely cons of using this deep learning based 
approach. First, the explainability of such an AI based model is limited. 
While we have conducted an ablation study to understand the ability of 
different environmental variables to enhance forecasting, a full under-
standing of the ways that these variables interact inside the model is yet 
to be achieved. Explainable AI is currently an active research topic 
(Samek et al., 2019), and with research effort on this topic, we hope that 
we can improve the explainability of this and other deep learning 
models for conservation management in the near future. Second, the 
prediction accuracy of the current approach for very long time periods is 
still limited. The ConvLSTM model integrated with environmental 

Fig. 8. Forecasting accuracy of different approaches in predicting longer time periods ahead.  
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variables achieves an R2 of 0.458 when predicting one year ahead, 
which has a similar performance as using the average of the previous 15 
steps. The current approach may still need to be improved for supporting 
conservation management decisions that require forecasting into a long 
time ahead. 

5.3. Limitations and future work 

This study is not without limitations. First, while we have examined 
the forecasting accuracy of ConvLSTM and other two deep learning 
approaches in one open ecosystem, more research is needed to under-
stand the performance of these models in other open ecosystems with 
similar complex vegetation dynamics, such as the Californian Chaparral, 
Australian Kwongan, and parts of the Mediterranean Basin. Studies in 
these other open ecosystems, together with this current study on the 
fynbos shrubland, can help form evidence on the ability of ConvLSTM 
and other deep learning models to forecast vegetation dynamics in open 
ecosystems. Second, due to data availability constraints, we have 
examined only 13 environmental variables in this study. Other vari-
ables, such as soil conditions, may also help the model make better 
predictions. In addition, we have used only static environmental vari-
ables, and dynamic variables in time series measurements could help 
inform the model about short-term changes in the environment. While 
those short-term changes could also bring in noise less relevant to 
vegetation growth, it would still be interesting to investigate and un-
derstand whether the additional information brought by the dynamic 
variables could outweigh their noise and ultimately improve forecasting 
accuracy. 

6. Conclusions 

Accurately forecasting vegetation dynamics in open ecosystems is 
critical for managing their biodiversity, fire, water, and carbon. In this 
work, we investigated the use of deep learning based approaches for 
forecasting vegetation dynamics in an open ecosystem, the fynbos 
shrubland of the Cape Peninsula located in the Cape Floristic Region of 
South Africa. We also examined the ability of a number of environ-
mental variables in enhancing forecasting, including precipitation, fire 
history, and vegetation types. We found that the ConvLSTM model can 
forecast vegetation state more accurately than RNN and FC-LSTM as 
well as two naive forecasting baselines based on NDVI time-series data. 
Environmental variables showed different ability to further improve the 
accuracy of vegetation forecasting. By integrating the ConvLSTM model 
and selected environmental variables, we obtained the best forecasting 
approach that can achieve an R2 of 0.807 for predicting one step ahead 
(about 8 days) and an R2 of 0.458 for predicting 46 steps ahead (about 
one year). Finally, we discussed the pros and cons of using such a deep 
learning based approach for supporting conservation management. 
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